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Continuing our exploration of chromium chemistry enabled by
“nacnac” (i.e.S-diketiminate) ligand$we have turned our attention
to low formal oxidation states. More specifically, we wish to explore
the structure and reactivity of monovalent chromium (Cr(l)), a
relatively rare oxidation state of said metal. Herein we report the
synthesis of a versatile precursor moleetfi@amely an unusual Cr(l)
dinitrogen complex-and its reactions with various small molecules
of interest.

Reaction of Cd with (i-Pr,PhknacnaclLi yielded the dinuclear
iodide [(-Pr.PhynacnacCu¢-1)], (1) as green crystals in high yield
(87%). Magnesium reduction of in THF under a nitrogen
atmosphere resulted in a color change to brown within 24 h.
Crystallization of the reaction product from pentanes produded [(
Pr,PhynacnacCre(u-Ny) (2) in 67% yield. The structure d has
been determined by X-ray diffraction, and the result is shown in
Figure 1. Chromium dinitrogen complexes are raesd?2 is the

only example featuring side-on bonding of, fh the u,-n2n? Figure 1. The molecular structure ¢f (30% probability level); all six N

S . . . and two Cr atoms are approximately coplanar. Selected interatomic distances
coordination modé&.The N—N distance of 1.249(5) A implies a (A) and angles (deg): N2N2A, 1.249(5); Crt-N1, 2.0264(16); Cri

modest degree of reduction of the Molecule. The facile ligand N2, 2.0209(9); CrEN2—CrlA, 144.00(13); CrEN2—N2A, 72.00(6).
substitution chemistry exhibited bg (vide infra) suggests a

description as a Cr(I) complex containing a dinitrogen ligand that Scheme 1.

Reactions of 2 with CO, C,H4, O,, and PhN=NPh

is not “activated” with respect to hydrogenation to ammadiat Q H

a formal oxidation state of Cr(ll) with a &~ ligand could also be LC/?’C=O\CFL Lcrl—i%_crl_
considered? features isotropically shifted and broadeAldNMR Yc=0" H
resonances, and its effective magnetic momem{293 K)= 3.9(1) 3 ‘\co CZIV H4

ug) suggests antiferromagnetic coupling between the two Cr atoms. "

The reactivity of2 is marked by ready displacement of the N

ligand by a variety of molecules, such asacids or potential Lo l'l‘l o

oxidants. Scheme 1 shows some representative and interesting PhN=NF;h/ 2 Q‘Z

examples. The molecular structures3aind4 are shown in Figure

2, some relevant observations follow. Ph . 2 Lci0
2 reacts rapidly with molecules that are stronger back-bonders ,_Cr< Yo L. N ) s ©

than N.. Thus, exposure of a THF solution @fto CO (1 atm) N N

produced carbonyl complex i{Pr,PhynacnacCe(CO)(u-ntn*- 6 N

CO), (3) as green crystals in 63% isolated yield. RemarkabBig,
neither symmetric nor diamagnetic. One terminal carbonyl and two
u-isocarbonyls are C-bonded to square pyramidal Crl, whereas theponding mode of ethylene is ratélhe 'H NMR spectrum of4
square planar coordination environment of Cr2 is completed by a did not change upon exposure to excess ethylene (1 atm), providing
nacnac ligand and two carbonyl oxygens. The IR spectruf@ of g evidence for a reversible dissociation into mononuclear ethylene

features CO stretching bands at 1919, 1616, and 1577 @ris complexes. We look forward to an investigation of analogues of

best thought of as a mixed-valent PCr') complex, and its and their reactivity.

magnetism #e(293 K) = 4.8(1) us) is consistent with such a Potential oxidants replace the Ngand of2, resulting in products

description, in which Crl is diamagnetic (low-spif) dnd Cr2 has  of oxidative addition. For example, dioxygea molecule of some

four unpaired electrons (high-spirf)d interest to usand many other&jn the context of aerobic oxidation
Reaction of2 with ethylene formed another unusual organo- catalysis-reacted with2 to yield (-Pr.PhjnacnacCr(Q)(5), that

metallic molecule, namely,ifPr.PhjnacnacCeg(u-1%n>CHa) (4). is, a mononuclear Cr(V) dioxo complex«(293 K) = 1.8(1) usg,

Binuclear 4 features a single ethylene ligand symmetrically consistent with a Hconfiguration). This reaction is of note as a
coordinated to two metal centers. The-C distance of 1.482(6) rare example of a four-electron oxidative addition oft@a single

A is consistent with binding of neutral ethylene to two electron- metal center. The detailed mechanism of this transformation,
rich w-basic Cr(l) centers. While the Dewa€hatt-Duncanson probably involving bi- or mononuclear superoxide and peroxide
model can certainly be adapted to fit this situation, thg?»? intermediates, will be interesting to unravel.
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Figure 2. The molecular structures & and4 (both at 30% probability
level); selected interatomic distances (A) and angles (ded: f@r1—C1,
1.833(2); Cr1-C2, 1.797(2); CrtC3, 1,797(2); Cr202, 2.0894(15); Cr2
03, 2.0905(15); C202, 1.203(2); C303, 1.204(2); CrxC2-02,
162.04(16); Cr+C3—03, 160.32(16); C202—Cr2, 122.34(12); C303—
Cr2, 123.59(13)4: Crl1—C1, 2.151(3); CrtC1A, 2.168(3); C+C1A,
1.482(6); Cr:-C1-Cri1A, 139.87(16); Cr+C1-C1A, 70.6(2).

Intermediate between LQwhich oxidatively adds) and i,
(which merely binds) is diimine (M,). Due to the instability of

this simple molecule, we chose its phenyl derivative azobenzene

(Ph—N=N-—Ph) as a stand-in. Addition of 1 equiv of azobenzene
to a THF solution of produced [(-Pr,PhynacnacCg(u-NPh), (6).
The structure ob (see Supporting Information) showed it to be a
binuclear Cr(lll) complex joined by two bridging phenylimido
ligands. Apparently, oxidative addition of the=iN double bond
has taken placé,halting, in this instance, at the-lll formal
oxidation state. Like all other molecules described hé&rds
paramagnetic and its magnetic moment(293 K) = 2.6(1) ug)

is reasonably attributed to antiferromagnetic coupling of two Cr(lll)
ions (cf) mediated by the bridging ligands.

With dinitrogen comple2, we have prepared a readily accessible
and reactive Cr(I) synthon. The chemistry described here is merely
the tip of an iceberg; further studies of Cr(l) compounds are in
progress in this laboratory.

Acknowledgment. This research was supported by NSF (CHE-
0616375) and DOE (DE-FG02-92ER14273). We thank P. Tobash
and S. Bobev for help with the preparation of chromous iodide.

Supporting Information Available: Experimental details regarding
the synthesis and characterizatiorlef6 (pdf) and the X-ray structure
determinations o2—6 (cif). This material is available free of charge
via the Internet at http:/pubs.acs.org.
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